Selected Solutionsfor Chapter 26:
Maximum Flow

Solution to Exercise 26.2-11

For any two vertices andv in G, we can define a flow network,, consisting
of the directed version off with s = u, t+ = v, and all edge capacities set to
(The flow networkG,,, hasV vertices an@ | E | edges, so that it ha8(V) vertices
andO(FE) edges, as required. We want all capacities to be 1 so thautneer of
edges ofG crossing a cut equals the capacity of the cutig.) Let f,, denote a
maximum flow inG,,,,.

We claim that for anyt € V, the edge connectivity equals I[ni{n}{|fuv|}. We'll
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show below that this claim holds. Assuming that it holds, &e findk as follows:

EDGE-CONNECTIVITY(G)

k = o0

select any vertex € G.V

for each vertew € G.V — {u}
set up the flow network,,, as described above
find the maximum flowf,,, onG,,,
k = min(k, | fuv|)

return k

The claim follows from the max-flow min-cut theorem and how etwse capac-

ities so that the capacity of a cut is the number of edges icipss We prove

thatk = rIr/nT }{|fw|}, for anyu € V by showing separately thatis at least this
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minimum and thak is at most this minimum.
* Proof thatt > min {| f,,,|}:
veV—{u}

Letm = r‘r/m‘{l ;{|fw|}. Suppose we remove only — 1 edges fromG. For
vevV —u

any vertexv, by the max-flow min-cut theorem, andv are still connected.
(The max flow fromu to v is at leastn, hence any cut separatinmgrom v has
capacity at least:, which means at leasgt edges cross any such cut. Thus at
least one edge is left crossing the cut when we removd edges.) Thus every
node is connected te, which implies that the graph is still connected. So at
leastn edges must be removed to disconnect the graph—ki.ﬂg.,rlr)ir? }{|fw|}.
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*  Proof thatc < min {| f,., |}:
veV—{u}

Consider a vertex with the minimum| f,,,|. By the max-flow min-cut the-
orem, there is a cut of capacity,,| separating: andv. Since all edge ca-
pacities are 1, exactlyf,,| edges cross this cut. If these edges are removed,
there is no path fromx to v, and so our graph becomes disconnected. Hence
k= min {lful}-

veV—{u
* Thus, the claim that = r‘r/1|r{1 }{|fuv|}, foranyu € V is true.
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Solution to Exercise 26.3-3

By definition, an augmenting path is a simple path-» ¢ in the residual net-
work G}. SinceG has no edges between vertices/inand no edges between
vertices inR, neither does the flow netwoi®” and hence neither doéﬁ}. Also,
the only edges involving or ¢ connects to L andR to ¢. Note that although edges
in G' can go only fromL to R, edges inG, can also go fronk to L.

Thus any augmenting path must go
s—>L—>R—---—>L—>R—1t,

crossing back and forth betwednand R at most as many times as it can do
so without using a vertex twice. It contains ¢, and equal numbers of dis-
tinct vertices fromL and R—at most2 4 2 - min(|L|, |R|) vertices in all. The
length of an augmenting path (i.e., its number of edges)us bounded above by
2-min(|L|,|R]) + 1.

Solution to Problem 26-4

a. Just execute one iteration of the Ford-Fulkerson algoriffine edgdu, v) in £
with increased capacity ensures that the edge) is in the residual network.
So look for an augmenting path and update the flow if a pathuedo

Time
O(V + E) = O(E) if we find the augmenting path with either depth-first or
breadth-first search.

To see that only one iteration is needed, consider sepathtkases in which
(u,v) is or is not an edge that crosses a minimum cutuJiv) does not cross a
minimum cut, then increasing its capacity does not changeaipacity of any
minimum cut, and hence the value of the maximum flow does nangh. If
(u, v) does cross a minimum cut, then increasing its capacity bgreases the
capacity of that minimum cut by 1, and hence possibly theesalithe maxi-
mum flow by 1. In this case, there is either no augmenting patvifich case
there was some other minimum cut tiiat v) does not cross), or the augment-
ing path increases flow by 1. No matter what, one iterationcsfif-ulkerson
suffices.
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b. Let f be the maximum flow before reduciagu, v).
If f(u,v) =0, we don’t need to do anything.

If f(u,v) > 0, we will need to update the maximum flow. Assume from now
onthatf(u,v) > 0, which in turn implies thatf (i, v) > 1.

Define f'(x,y) = f(x,y)forallx,y € V, exceptthatf’(u,v) = f(u,v)—1.
Although f” obeys all capacity contraints, even afté€n, v) has been reduced,
it is not a legal flow, as it violates flow conservationafunlessu = s) andv
(unlessv = ¢t). f’ has one more unit of flow enteringthan leavingt, and it
has one more unit of flow leavingthan entering.

The idea is to try to reroute this unit of flow so that it goes @iu# and intov
via some other path. If that is not possible, we must redue@dlv froms to u
and fromv to ¢ by one unit.

Look for an augmenting path fromto v (note: not from s to ¢).

+ If there is such a path, augment the flow along that path.

* If there is no such path, reduce the flow frerto u by augmenting the flow
from u to s. That is, find an augmenting path ~» s and augment the
flow along that path. (There definitely is such a path, becthee is flow
froms tou.) Similarly, reduce the flow from to ¢ by finding an augmenting
patht ~ v and augmenting the flow along that path.

Time
O(V + E) = O(FE) if we find the paths with either DFS or BFS.



