
Selected Solutions for Chapter 26:
Maximum Flow

Solution to Exercise 26.2-11

For any two verticesu and� in G, we can define a flow networkGu� consisting
of the directed version ofG with s D u, t D �, and all edge capacities set to1.
(The flow networkGu� hasV vertices and2 jEj edges, so that it hasO.V / vertices
andO.E/ edges, as required. We want all capacities to be 1 so that the number of
edges ofG crossing a cut equals the capacity of the cut inGu�.) Let fu� denote a
maximum flow inGu�.

We claim that for anyu 2 V , the edge connectivityk equals min
�2V �fug

fjfu�jg. We’ll

show below that this claim holds. Assuming that it holds, we can findk as follows:

EDGE-CONNECTIVITY.G/

k D 1

select any vertexu 2 G:V
for each vertex� 2 G:V � fug

set up the flow networkGu� as described above
find the maximum flowfu� onGu�

k D min.k; jfu�j/

return k

The claim follows from the max-flow min-cut theorem and how wechose capac-
ities so that the capacity of a cut is the number of edges crossing it. We prove
thatk D min

�2V �fug
fjfu�jg, for anyu 2 V by showing separately thatk is at least this

minimum and thatk is at most this minimum.

� Proof thatk � min
�2V �fug

fjfu�jg:

Let m D min
�2V �fug

fjfu�jg. Suppose we remove onlym � 1 edges fromG. For

any vertex�, by the max-flow min-cut theorem,u and� are still connected.
(The max flow fromu to � is at leastm, hence any cut separatingu from � has
capacity at leastm, which means at leastm edges cross any such cut. Thus at
least one edge is left crossing the cut when we removem�1 edges.) Thus every
node is connected tou, which implies that the graph is still connected. So at
leastm edges must be removed to disconnect the graph—i.e.,k � min

�2V �fug
fjfu�jg.
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� Proof thatk � min
�2V �fug

fjfu� jg:

Consider a vertex� with the minimumjfu�j. By the max-flow min-cut the-
orem, there is a cut of capacityjfu�j separatingu and�. Since all edge ca-
pacities are 1, exactlyjfu�j edges cross this cut. If these edges are removed,
there is no path fromu to �, and so our graph becomes disconnected. Hence
k � min

�2V �fug
fjfu�jg.

� Thus, the claim thatk D min
�2V �fug

fjfu�jg, for anyu 2 V is true.

Solution to Exercise 26.3-3

By definition, an augmenting path is a simple paths ; t in the residual net-
work G 0

f
. SinceG has no edges between vertices inL and no edges between

vertices inR, neither does the flow networkG 0 and hence neither doesG0
f

. Also,
the only edges involvings or t connects to L andR to t . Note that although edges
in G0 can go only fromL to R, edges inG0

f
can also go fromR to L.

Thus any augmenting path must go

s ! L ! R ! � � � ! L ! R ! t ;

crossing back and forth betweenL and R at most as many times as it can do
so without using a vertex twice. It containss, t , and equal numbers of dis-
tinct vertices fromL andR—at most2 C 2 � min.jLj ; jRj/ vertices in all. The
length of an augmenting path (i.e., its number of edges) is thus bounded above by
2 � min.jLj ; jRj/ C 1.

Solution to Problem 26-4

a. Just execute one iteration of the Ford-Fulkerson algorithm. The edge.u; �/ in E

with increased capacity ensures that the edge.u; �/ is in the residual network.
So look for an augmenting path and update the flow if a path is found.

Time

O.V C E/ D O.E/ if we find the augmenting path with either depth-first or
breadth-first search.

To see that only one iteration is needed, consider separately the cases in which
.u; �/ is or is not an edge that crosses a minimum cut. If.u; �/ does not cross a
minimum cut, then increasing its capacity does not change the capacity of any
minimum cut, and hence the value of the maximum flow does not change. If
.u; �/ does cross a minimum cut, then increasing its capacity by 1 increases the
capacity of that minimum cut by 1, and hence possibly the value of the maxi-
mum flow by 1. In this case, there is either no augmenting path (in which case
there was some other minimum cut that.u; �/ does not cross), or the augment-
ing path increases flow by 1. No matter what, one iteration of Ford-Fulkerson
suffices.
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b. Let f be the maximum flow before reducingc.u; �/.

If f .u; �/ D 0, we don’t need to do anything.

If f .u; �/ > 0, we will need to update the maximum flow. Assume from now
on thatf .u; �/ > 0, which in turn implies thatf .u; �/ � 1.

Definef 0.x; y/ D f .x; y/ for all x; y 2 V , except thatf 0.u; �/ D f .u; �/�1.
Althoughf 0 obeys all capacity contraints, even afterc.u; �/ has been reduced,
it is not a legal flow, as it violates flow conservation atu (unlessu D s) and�

(unless� D t ). f 0 has one more unit of flow enteringu than leavingu, and it
has one more unit of flow leaving� than entering�.

The idea is to try to reroute this unit of flow so that it goes outof u and into�

via some other path. If that is not possible, we must reduce the flow froms to u

and from� to t by one unit.

Look for an augmenting path fromu to � (note:not from s to t).

� If there is such a path, augment the flow along that path.
� If there is no such path, reduce the flow froms to u by augmenting the flow

from u to s. That is, find an augmenting pathu ; s and augment the
flow along that path. (There definitely is such a path, becausethere is flow
from s to u.) Similarly, reduce the flow from� to t by finding an augmenting
patht ; � and augmenting the flow along that path.

Time

O.V C E/ D O.E/ if we find the paths with either DFS or BFS.


